, , , ,

Inflammation: What Is It, and how can my diet and behavior affect it?

Suppose you’ve been told to eat an anti-inflammatory diet, or maybe you’re a practitioner whose clients want to know whether this is right for them. Before hopping on this buzzy bandwagon, ask yourself ‘For what purpose?’

Without missing a beat, you say ‘Well, to reduce my inflammation!’

While technically a noble intention, let’s first acknowledge that this term is used loosely in everyday conversation, but it’s more misunderstood than one might initially believe. Let’s talk about this elephant in the room, dive in, and answer a few key questions: What’s inflammation in the first place? What factors (dietary and otherwise) contribute to, or mitigate it? And finally, how might we modify our diets and our behavior to reduce it?

What is inflammation?

In broad terms, inflammation is the body’s immune system’s response to a stimulus.1This can be in response to common injuries such as burning your finger, or falling off of a bicycle, after which you feel the affected area become red, warm, and puffy- this is a localized response to injury, characterized by ‘increased blood flow, capillary dilation, leucocyte infiltration, and production of chemical mediators.’2In short, an inflammatory response means the innate (non-specific) immune system is ‘fighting against something that may turn out to be harmful.’

It turns out that while inflammation is often cast in a negative light, it’s actually essential in small amounts for immune-surveillance and host defense.2 In true ‘Goldilocks’ form, too little and too much inflammation both pose problems; in fact, most chronic diseases are thought to be rooted in low-grade inflammation that persists over time. This inflammation may go unnoticed by the host (you!) until overt pathologies arise, which include, but are not limited to, diabetes, cardiovascular disease, nonalcoholic fatty liver disease, obesity, autoimmune disorders, inflammatory bowel disease, and even clinical depression. This concept is called ‘The inflammation theory of disease,’ in which inflammation is the common underlying factor among the leading causes of death.3

How do we measure inflammation?

Although measuring low-grade chronic inflammation (read: A chronic, low-grade immune response) carries a number of limitations, studies frequently measure cellular biomarkers such as activated monocytes, cytokines, chemokines, various adhesion molecules, adiponectin, non-specific markers such as C-reactive protein, fibrinogen, and serum amyloid alpha. Key inflammatory pathways include sympathetic activity, oxidative stress, nuclear factor kappaB (NF-kB) activation, and proinflammatory cytokine production.4 Now you might wonder, ‘What does this mean for me? What modifiable factors can activate my key inflammatory pathways?’ If we are to address this question appropriately, let us turn our attention to both dietary and behavioral moderators.

What makes up an anti-inflammatory diet?

Prolonged low-grade inflammation is associated with excessive oxidative stress and altered glucose and lipid metabolism in our fat (adipose) cells, muscle, and liver.4 Therefore, research suggests that certain dietary components can modulate these key inflammatory pathways and clinical pathologies. Dr. Barry Sears explains in a review paper that “anti-inflammatory nutrition is the understanding of how individual nutrients affect the same molecular targets affected by pharmacological drugs.” 5

Compelling research from large-scale, longitudinal observational studies including the Women’s Health Initiative Observational Study6 and Multi-Ethnic Study of Atherosclerosis (MESA) study7suggest that a diet with appropriate calories that is low in refined carbohydrates, high in soluble fiber, high in mono-unsaturated fatty acids, a higher omega-3 to omega-6 ratio, and high in polyphenols, all have anti-inflammatory effects on the body. A Mediterranean diet pattern that incorporates olive oil, fish, modest lean meat consumption, and abundant fruits and vegetables, legumes, and whole grains, shows more anti-inflammatory effects when compared to a typical American dietary pattern. Other observational and interventional studies have also suggested that dietary patterns incorporating green and black tea, walnuts, ground flaxseed, and garlic are also associated with reduced inflammation.


Can my stress levels influence inflammation, too?

To conclude our discussion with anti-inflammatory dietary strategies would be a half-told story. In fact, “Communication between the systemic immune system and the central nervous system (CNS) is a critical but often overlooked component of the inflammatory response to tissue injury, disease or infection.”3

Behavioral studies have shown that prolonged psychological stress can activate the same pro-inflammatory pathways we’ve been discussing all along. While chronic psychological stress can promote over-expression of pro-inflammatory mediators, it can also promote overeating unhealthful foods in the absence of hunger. 8 Repetitively stress-eating calorie-dense, nutrient-poor foods not only further exacerbates psychological distress and creates a vicious cycle of stress-eating, but over time promotes adiposity, which we’ve described is itself a pro-inflammatory state.

Integrative strategies and considerations

This ‘cross-talk’ between the brain and body suggests that strictly dietary or strictly behavioral interventions are not enough to reduce inflammation on their own. Instead, we must consider integrative diet and lifestyle preventions/interventions simultaneously. Going forward, we’ll need better biomarkers and more research looking at individual responses to diet (personalized nutrition!), and better understanding of how food components and behavioral factors modulate genetic targets involved in the inflammatory response.



  1. What is an inflammation? National Center for Biotechnology Information. Published January 7, 2015. Accessed March 16, 2018.
  2. Hunter P. Stress, Food, and Inflammation: Psychoneuroimmunology and Nutrition at the Cutting Edge. EMBO Reports. Published November 2012. Accessed March 16, 2018.
  3. Hunter, Philip. The Inflammatory Theory of Disease. EMBO Reports, Nature Publishing Group, Nov. 2012,
  4. Galland, Leo. “Diet and Inflammation.” Sage, 7 Dec. 2010,
  5. Sears, Barry, and Camillo Ricordi. “Anti-Inflammatory Nutrition as a Pharmacological Approach to Treat Obesity.” Journal of Obesity, Hindawi Publishing Corporation, 2011,
  6. Thomson, C A, et al. “Association between Dietary Energy Density and Obesity-Associated Cancer: Results from the Women’s Health Initiative.” Journal of the Academy of Nutrition and Dietetics., U.S. National Library of Medicine,
  7. “Associations of Dietary Long-Chain n-3 Polyunsaturated Fatty Acids and Fish With Biomarkers of Inflammation and Endothelial Activation (from the Multi-Ethnic Study of Atherosclerosis [MESA]).” The American Journal of Cardiology, Excerpta Medica, 4 Mar. 2009,
  8. Tryon, M., Carter, C., DeCant, R. and Laugero, K. (2013). Chronic stress exposure may affect the brain's response to high calorie food cues and predispose to obesogenic eating habits. Physiology & Behavior, 120, pp.233-242.

Simply Living Healthy Reduces Cancer Risk

Colleen Doyle, MS, RD, from the American Cancer Society shared both the myths and realities relating to cancer risk. Her overall message? Live healthier lives!
We know there are 160 million people overweight in the United States, we also know 120 million don’t meet the physical activities guidelines and 95 million don’t eat enough fruits and vegetables. How this relates to cancer risk lies in the data that tells us obesity, poor nutrition, inactivity, and smoking are the leading causes of cancer and that eating well, maintain a healthy weight, and exercise is the best way to avoid it.
The 2012 American Cancer Society guidelines recommend:
Maintain a  healthy weight: up to 20% of all deaths in the United States are related to obesity
Adapt a physically active lifestyle: Adults should get at least 150 minutes of moderate exercise a week and adolescents should have one hour per day. People are encouraged to limit sedentary behavior such as sitting and watching television.
Consume a healthy diet with focus on plant sources: We should eat two and a half cups of fruits and vegetables a day as well as limit processed and red meat while choosing whole grains over refined produce. The only known cancer risk is associated with eating processed meats and colon cancer.
Drink alcohol in moderation: Limit consumption to one or two glasses per day.
As nutrition professionals, how do we support cancer survivors? Studies have shown that patients who adhere to the ACS guidelines do have lower rates of cancer and cardiovascular disease. Unfortunately, too many people are not aware of these guidelines.
The presentation also addressed several myths surrounding the risk of cancer, including sugar feeds cancer, soy is dangerous, superfoods have special health powers, alkaline diets are best,  organic foods add protective value, and GMOs, artificial sweeteners, or supplements reduce cancer risk. There is no research that shows any of these myths to be true.
Ms. Doyle concluded her presentation with an insightful look at how environmental factors conspire against us and affect our ability to make healthy food choices.
She emphasized we all have a role to play in reducing the barriers to a healthy diet and exercise. We can influence changes in policies and systems to make healthier communities.
The bottom line is that we all need to look at the big picture in creating healthy communities, living healthier lives,  and improving our quality of life.
, ,

Health Professionals Need More Nutrition Education. How Can We Deliver?

By Allison Dostal, PhD

It’s not a revelation that most Americans would benefit from increased nutrition education and guidance. Newly released data from the Centers for Disease Control and Prevention1 show that 64% of Americans are overweight or obese – a number that’s held steady over the past few decades – and that nearly 40% of us consume less than 1 serving of fruits or vegetables daily. $210 billion is spent annually on obesity-related disease2.

It is known, perhaps intuitively, that physicians trained in nutrition achieve improved health outcomes in patients with obesity-related conditions3. Numerous clinical guidelines recommend that physicians counsel their overweight and obese patients on diet, and yet, fewer than 25% feel that they received adequate training in doing so. As a result, only 1 in 8 medical visits includes a discussion of nutrition4,5. This disconnect in recommendations versus practice is a significant issue in medical education today, and the perennial discussion of how to improve the current state of nutrition education in the medical curriculum continues to increase in relevance in our nation’s obesity crisis.

The Problem

It is recommended that physicians-in-training receive 25 contact hours of nutrition education, including basic nutrition knowledge, assessment, nutrition intervention, and dietary treatment of disease. However, nutrition education in medical schools has continued to fall below this target – and it’s getting worse. A 2012 survey4 found that most medical schools fail to require the recommended amount of nutrition education, with less than 15% of schools providing the 25-hour minimum. The number of hours devoted to nutrition education has dropped substantially since 2004, while the number of schools with no required nutrition education has risen4.

Compounding this issue, many medical training programs provide only basic nutrition background, often buried within a biochemistry or physiology course. While it is undeniably important to highlight the specific actions of vitamins and minerals, this model fails to highlight real-world clinical application of nutrition. Even less time is devoted to developing patient counseling skills. Lastly, the U.S.’s health professional training systems do not provide expertise or incentives to deliver effective counseling on how to achieve and maintain a healthy weight, diet, and physical activity level. This leads to a divide in thinking – a “should” or “want to do” versus “need to” or “have time to do”, and a reduced sense of urgency about implementing changes.

Working Toward a Solution

In addition to a lack of monetary or standard-of-care incentive to increase knowledge dissemination, another primary reason for suboptimal nutrition education is lack of time. This exists both in the amount of time devoted to actual coursework within medical training and for development of a nutrition curriculum within a program. Fortunately, several groups have worked diligently to provide resources that alleviate these barriers. In contrast to many programs that are specific to a particular institution, Nutrition in Medicine6, is a web-based series for students and healthcare professionals, administered through the University of North Carolina at Chapel Hill’s Department of Nutrition. There are over 40 modules ranging from 15 to 60 minutes in length that offer basic nutrition knowledge as well as evidence-based instruction of clinical skills. In addition to providing biochemical, clinical, and epidemiological components and virtual case studies, NIM also offers nutrition tools like pocket notes, nutrient recommendations, quizzes, and YouTube video vignettes. Nearly 75% of U.S. medical schools take advantage of at least one NIM module, and the program has proven to be successful in providing 33% more nutrition education in schools that use NIM versus those that do not.

And the best part? It’s completely free.

Future Directions

Despite the advances made by NIM in improving the dissemination of nutrition knowledge in the medical curriculum, challenges remain. Martin Kohlmeier, NIM’s principal investigator, has acknowledged that building good nutrition education tools is expensive and time consuming, since materials need to be reviewed continuously and updated every 4-5 years. Supporting a web-based tool takes a significant amount of resources, and funding sources are difficult to consistently maintain.

Recently, this cause has been taken up by several prominent health and medicine-focused organizations. A new effort has been launched to teach medical students, physicians, and other allied health professionals how to discuss obesity treatment and prevention options with patients. This initiative is a collaboration between the Bipartisan Policy Center, the Health and Medicine Division of the National Academies of Sciences, the American College of Sports Medicine, and the Alliance for a Healthier Generation. The multi-year project, supported by the Robert Wood Johnson Foundation, will develop “core competencies for obesity prevention, management, and treatment for the health professional training pipeline and identify payment policies that will incentivize the delivery of this care”, as stated in their April 11th press release7. Their goals are for these competencies to be implemented in training programs across the full spectrum of health professionals, and to determine a strategy to reimburse effective counseling for maintaining a healthy weight, diet, and physical activity level. “Training health professionals without a concurrent strategy to reimburse this type of care will not lead to meaningful change. And offering payment without having trained professionals to provide the care also will not result in improve[d] patient care,” the group stated.

This working group, like those involved in the Nutrition in Medicine curriculum, acknowledges that systemic changes to improve nutrition education in medical training will require continuous commitment from a wide range of stakeholders. Details of this initiative have not yet been announced, but those of us involved in education and clinical care certainly look forward to seeing the first steps begin.

Are you a health care professional, student, or educator? What is your experience in teaching or learning nutrition and nutrition counseling skills? I welcome your comments and insight on this issue.


1.Nutrition, Physical Activity and Obesity Data, Trends and Maps web site. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity and Obesity, Atlanta, GA, 2015. Available at

2.Cawley J and Meyerhoefer C. The Medical Care Costs of Obesity: An Instrumental Variables Approach. Journal of Health Economics, 31(1): 219-230, 2012.

3.Rosen BS, Maddox PJ, Ray N. A position paper on how cost and quality reforms are changing healthcare in America: focus on nutrition. Journal of Parenteral and Enteral Nutrition 2013;37(6):796–801.

4.Adams, K.M., Kohlmeier, M., & Zeisel, S.H. Nutrition Education in U.S. Medical Schools: Latest Update of a National Survey. Academic Medicine. 2010;85(9): 1537-1542.

5.Early KB, Adams KM, Kohlmeier M. Analysis of Nutrition Education in Osteopathic Medical Schools. Journal of Biomedical Education, vol. 2015, Article ID 376041, 6 pages, 2015. doi:10.1155/2015/376041

6.K. M.Adams, M.Kohlmeier, M. Powell, and S. H. Zeisel, “Nutrition in medicine: nutrition education for medical students and residents. Nutrition in Clinical Practice. 2010;25(5), 471–480. Available at:

7.Bipartisan Policy Center. New Effort Launch to Train Health Professionals in Nutrition and Physical Activity. 21 Mar. 2016.

, ,

Is January 1 the best date to kick-start a weight loss diet?

By: Hassan S Dashti, PhD

The most popular New Years resolution by far is weight loss. People kick-start their new year on new ‘detox’ or fad diets with hopes to lose some weight or, less commonly, to adopt a healthy lifestyle, only to quit a few months later. Traffic to websites like and hits an all time high in January! (1) People often envision January 1 of every year as an empowering and motivating moment that enables them to consider making these daring lifestyle changes. People might be less inclined to make these commitments on arbitrary dates like March 1 or October 19. With emerging evidence suggesting seasonal changes in the environment and human physiology, driven primarily by seasonal changes in sunlight and temperature, is it possible that certain start dates or seasons are more conducive to successful weight loss?

Seasonal variations have been observed for numerous communicable and non-communicable diseases (2) and both biological and behavioral traits. One of the earliest observations of seasonal variation in a disease was that of rickets, a disease resulting from vitamin D deficiency (3). Clinical observations indicated that rickets was common in spring, but rare in fall. The subsequent finding of seasonal variation in plasma 25(OH)D levels suggested that summer sunlight exposure was indeed an important determinant of vitamin D status. For more complex traits, like obesity, the seasonal etiology, if present, is likely to be multifactorial!

Successful weight loss is largely determined by the ability to reduce overall caloric intake, which depends on food availability and internal hunger cues. Living at a time where food is essentially abundant year-round in the Western world, people are typically not dealing with food shortages. For most processed foods, seasonal price variability is also absent, particularly in metropolitan areas, so people’s intakes are likely to be homogenous year-round (4,5). However, seasonal price variability of nutrient dense fruits and vegetables may limit a person’s likelihood to adhere to diets higher in fruits and vegetables. For example, strawberry prices tend to decrease through the first four months of the year and rise again from September to December. Fresh apples, on the other hand, have a fairly weak seasonal price pattern as a result of new apple varieties with later harvest dates and sophisticated storage technology. But it seems that despite the constant supply of most foods at steady prices, seasonal variation in dietary intake may exist. In the Framingham Heart Study, for example, self-reported total energy intake was 86 kcal/day higher during the fall than in the spring (6). Also, percentage of calories from carbohydrate, fat and saturated fat showed slight seasonal variation, with a peak in the spring for carbohydrate and in the fall for total fat and saturated fat intake. Of course these differences may be due to seasonal differences in self-reporting and recall, but if it’s true, is weight loss in the spring more successful than the fall?

Another important aspect of weight loss to consider is seasonal variability in energy expenditure.

The investigation from the Framingham Heart Study (6) also observed seasonal variation in physical activity, including common activities such as gardening, carpentry, lawn mowing, golf and running for men, and gardening, swimming, health club exercise, dancing and bicycling for women. Not surprisingly, people residing in the Northeast are less inclined to engage in outdoor physical activity. This sedentary lifestyle in the winter may partly explain the reason why people tend to be the heavier in the winter! (7)

Newer studies are investigating more complex physiologic changes that might interfere with energy balance. Recent observations in humans suggest that cold exposure may induce the conversion of white adipose tissue to more metabolically active brown-like adipose tissue (8). This ‘beiging’ effect of cold exposure could potentially have clinical implications for diabetes and obesity. Other studies have observed seasonal variability in metabolism and epigenetics as well (9,10). Whether these physiologic differences can override energy imbalance resulting from seasonal lifestyle differences is currently unknown.

To test whether there are seasonal differences in weight loss success we’d ideally test this in a randomized and controlled weight loss trial whereby people are prescribed hypocaloric diets and assigned random start dates. This can also be investigated analytically in previously conducted weight loss cohorts. Various methodologies are available for the assessment of seasonality and those range from simple comparisons across seasons, to simple models such as fitting monthly counts to a sine curve, or more complex statistical models (2).

Despite the little evidence we have so far relating seasonality and energy balance, healthcare providers, including nutritionists, should account for seasonality in their practice, and tailor their dietary (food and fluids) and physical activity recommendations accordingly – it’d be senseless to recommend berries when they are unavailable at stores or outdoor exercise when it’s uncomfortably warm! But perhaps reaching that point of enthusiasm for weight loss is the most important factor predicting weight loss success, so if January 1 is that date when motivation hits in, then so be it!


2.Christiansen CF, Pedersen L, Sørensen HT, Rothman KJ. Methods to assess seasonal effects in epidemiological studies of infectious diseases–exemplified by application to the occurrence of meningococcal disease. Clin Microbiol Infect. 2012 Oct;18(10):963–9.
3.Stamp TC, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974 Feb 22;247(5442):563–5.
4.Evolving U.S. Fruit Markets and Seasonal Grower Price Patterns, by Kristy Plattner, Agnes Perez, and Suzanne Thornsbury, USDA, Economic Research Service, September 2014
5.Bernstein S, Zambell K, Amar MJ, Arango C, Kelley RC, Miszewski SG, et al. Dietary Intake Patterns Are Consistent Across Seasons in a Cohort of Healthy Adults in a Metropolitan Population. J Acad Nutr Diet. 2016 Jan;116(1):38–45.
6.Ma Y, Olendzki BC, Li W, Hafner AR, Chiriboga D, Hebert JR, et al. Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. Eur J Clin Nutr. 2006 Apr;60(4):519–28.
7.Visscher TLS, Seidell JC. Time trends (1993-1997) and seasonal variation in body mass index and waist circumference in the Netherlands. Int J Obes Relat Metab Disord. 2004 Oct;28(10):1309–16.
8.Iyengar P, Scherer PE. Obesity: Slim without the gym – the magic of chilling out. Nat Rev Endocrinol. 2016 Feb 26.
9.van Ooijen AMJ, van Marken Lichtenbelt WD, van Steenhoven AA, Westerterp KR. Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol Behav. 2004 Sep 15;82(2-3):545–53.
10.Aslibekyan S, Dashti HS, Tanaka T, Sha J, Ferrucci L, Zhi D, et al. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population. Chronobiol Int. 2014 Jul 30;:1–7.

Are consumers benefitting more than they know from recent food and behavior trends?

By: Emma Partridge

American consumers are undoubtedly moving toward natural foods. An analysis by Datassential of consumer foodservice issue concerns may explain some factors in this overall trend; consumers appeared most concerned with antibiotics and steroids in animal proteins and/or dairy products, local food sources and manufacturers surviving, and GMOs, among other issues.1 Fortune magazine calls it “the war on big food” – but are consumers benefitting from more than just those ‘left out’ factors?2 I had the chance to sit down with Dr. Mario Kratz, researcher at the Fred Hutchinson Cancer Research Center, core faculty member of the University of Washington (UW), and Associate Director of the UW Diabetes Research Center, to discuss a few of these food trends and what their intrinsic health benefits might be.

One trend of note is the move toward full-fat dairy products. Whole milk sales rose 11% in the first half of 2015 alongside a 14% fall in skim milk purchases.3 While many speculate this shift is in line with movement toward wholesome, unprocessed foods, there are unrecognized benefits to full-fat dairy beyond its less-processed nature. Full-fat dairy may increase satiety, or lead a person to feel more full than if (s)he ate a low-fat dairy product. In evaluations of 16 dairy fat studies, Dr. Kratz’s team found that, of studies comparing high-fat dairy to low-fat dairy, high-fat dairy intake was actually associated with better weight outcomes, and was not associated with higher weight. Further, 11 of the 16 studies revealed that people who ate more dairy fat or high-fat dairy foods tended to be leaner and/or gain less weight over time than those who ate less dairy fat.4 The results from these analyses make a case for full-fat dairy as a protectant against weight gain, potentially due to increased satiety response. Additionally, there are other fatty acids present in full-fat dairy that can act as hormones, and small amounts of these fatty acids may be beneficial. The scientific reasoning behind the presence of many fatty acids supports full-fat dairy and, on the other side of that coin, there is no data supporting healthful benefits from consuming non-fat, low-fat, or isolated-fat dairy products in which many of the fatty acids have been removed.5

Another food trend of note over the past few years is that of coconut oil. While part of the trend may be attributable to its non-cooking uses, coconut oil is also highly heat resistant, has a long shelf life, and is rich in medium chain saturated fatty acids (MCFAs). The heat-stability of coconut oil is beneficial to reducing intake of harmful free radicals, but MCFAs may be the most significant of coconut oil’s intrinsic health benefits. In a study comparing long chain fatty acids, generally purported to be less-healthy fatty acids, to MCFAs, researchers found MCFA-treated mice exhibited increased energy expenditure, reduced adiposity, and improved insulin sensitivity.6 It is possible, then, that consumers following the coconut oil trend may be reaping such metabolic health benefits.

Perhaps the most significant trend to watch is that of developing healthy, lifestyle-based eating patterns, which is recommended by the 2015 Dietary Guidelines Advisory Committee in the recently-released 2015-2020 Dietary Guidelines for Americans. In a media-driven world of shoulds and should-nots, the Dietary Guidelines Advisory Committee took a different approach with this year’s release: develop patterns of healthy eating and physical activity within the environment around you. Dr. Kratz argues something similar, that pattern matters and a varied eating pattern may allow for small amounts of cravings and diet-breakers, thusly providing a method to control them.5 In short, his “number one” advice point is, “in spite of whatever craze you may be following right now…if you find something new, you should find a way to incorporate it into your overall diverse diet.”

1.Webster M. Changing Consumer Behaviors and Attitudes. Culinary Institute of America; 2015.
2.Kowitt B. Special report: the war on big food. Fortune 2015.
3.O’Connor A. Consumers Are Embracing Full-Fat Foods. The New York Times 2015. Why Whole Milk May Be Better Than Skim. Bottom Line Health 2014.
5.Mario Kratz P, MS. In: Emma Partridge MC, ed2016.
6.Montgomery MK, Osborne B, Brown SHJ, et al. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. Journal of Lipid Research. 2013;54(12):3322-3333.

Uganda and Food Security: Thoughts from a Personal Experience

By Amber Furrer, MS

The term “food security” at a basic level was defined by the World Food Summit of 1996 as “when all people at all times have access to sufficient, safe, nutritious food to maintain a healthy and active life” (FAO 1996). This is obviously a key element in success and well-being of any people, though its realization will look a little bit different in America, where we do still have food insecure, compared to other parts of the world.

There are many facets to the problem: poor infrastructure and organization, poverty, limited education, social injustice and gender inequality, conflict, and lack of natural resources. Solutions also cannot generally be broadly applied because each country experiences these issues differently. Despite the successes of the Green Revolution in agriculture and food research implementation and nutrition interventions since the 1960’s, around 850 million people (or about 15% of the world’s population) remain malnourished. For children specifically, this jumps to 20%. The enormity of the problem can leave a person wondering what possible difference one person or one organization could make.

On May 8, I traveled to Uganda on 3-week assignment with a United States-based NGO whose mission is to serve the vulnerable in developing countries with development and relief efforts. Uganda, like the surrounding countries, is given a “low human development” score in the 2014 Human Development Report by the United Nations. In 2006, 38% of Ugandan children experienced chronic malnutrition, or stunting. Vitamin A and iron deficiency remain critical problems in population health, especially for mother and children (FAO 2010)

The broad focus of my assignment was nutrition education and recipe development for a small-holder farmer cooperative. In general, farmers are an important target for nutrition education because they are able to impact the local food supply and most farmers are women of reproductive age.
Preparing for my trip, I wasn’t sure what kind of impact I would have. A semi-tropical climate allows Ugandans to grow and consume a variety of foods, and on paper I thought their diet seemed pretty adequate. But of course things on paper are always a bit different than what you find in reality.

I spent two days with each group of farmers, the first day communicating (through a translator) the basic, important concepts of nutrition and the second explaining and demonstrating foods and preparation methods that could improve the diet quality of people in their district. I shared the kind of information that we take for granted: the role of carbohydrates, protein, fat, vitamins, and minerals in our bodies and the importance of consuming a balanced diet including a variety of foods in addition to other simple but important tidbits like “don’t feed tea and coffee to your children.” When it came to recipe demonstrations, I explained things that most people in the US could look up on a computer whenever they wanted, but for these women and men was not accessible.

Along the way, I began to recognize that consumption patterns, while related to economic factors, often have more to do with cultural practices and preferences and societal barriers. A visitor to Uganda immediately notices the huge amount of carbohydrate sources consumed at every meal. There are several, including Irish potatoes, (white) sweet potatoes, cassava, green banana, rice, corn and millet-based pastes, and wheat-based chapatti. Ugandans also grow a variety of beans, ground and tree nuts, vegetables, and fruits, so it is not that nutritious foods are totally absent, but are consumed in skewed proportions.

Fruit is considered child’s food, and vegetables (including beans) are consumed in very small amounts. Meat, dairy, and eggs are not widely affordable, and insects and fish have an undesirable “poor food” stigma attached. Influences and perceptions of a Western diet have made white bread and other packaged foods sought-after commodities, rather than the native whole grain millet, avocadoes, mangos, and other naturally nutritious foods that Americans are ironically trending towards.

In lacking a strong education system and broad computer access, Ugandan people live in an information desert. Despite the agricultural potential for variety, many dishes are made and consumed the same way day after day with the same ingredients because knowledge on nutrition and food preparation is lacking. There are countries with enough conflict and natural resource struggles that educating on the benefits of vegetable and dairy/animal protein consumption might be a moot point, but in Uganda these things are more achievable. Timing seems critical: these farmers were at a point where they requested this training, and that makes the potential impact far greater.

Easily-modified agricultural factors can have broad influence on the diet. For example, simple introduction of orange-fleshed, rather than white-fleshed, sweet potatoes can vastly improve vitamin A intake. Increasing use of fertilizers or crop rotation practices can ensure that minerals which foods like peanuts should theoretically contain are actually present.
Gender-related issues can also impact diet quality. Women are responsible for feeding themselves and their children, but the money, even money they earned, is not always in their hands. Men may have a nice meal at a restaurant while women eat cassava and potatoes at home. In addition, the common practice of multiple wives and the perception of children as a status symbol often make families quite large.

Overall, while economic, agricultural, and societal factors do play a role in food security, in countries such as Uganda I think nutrition education has strong potential to directly provide needed knowledge and indirectly change practices and prejudices that impede diet quality. My personal experience fully supports UNICEF recommendations for future nutrition education programs, including starting young, investing in women and girls, and collaborating across ministries to support integrated approaches to improving the diet (Unicef 2014). These integrated approaches address other strong nutrition influencers such as food safety and hygiene and health and disease, in addition to agricultural production.

FAO. 1996. “Declaration on World Food Security.” World Food Summit, Rome: FAO.
FAO. 2010. “Uganda.” United Nations.
Unicef. 2014. “Multi-Sectoral Approaches to Nutrition: The Case for Investment by Educational Programmes.”