, ,

Multiple Micronutrients Offer Multiple Possibilities for Pregnant Women and Newborns

By Marion L. Roche, PhD, Micronutrient Initiative

An estimated 42% of pregnant women are anemic. Anaemia in pregnancy is associated with increased mortality for mothers and infants, low birth weight in infants and increased risk of premature delivery. Iron Folic Acid (IFA) supplementation is recommended where anaemia is a public health concern. Many in the global nutrition research community have been anxiously awaiting the JiVitA-3 Randomized Trial in Bangladesh. This study has been looking at the comparative effectiveness of iron folic acid (IFA) supplements vs. multiple micronutrient supplements for pregnant women and one month postpartum.

This recent research in Bangladesh, which shows potential to reduce preterm births and low birth weight, holds promise for contributing to global reductions in neonatal mortality, although reductions in infant mortality were not found to be significant in this study. Low birth weight puts infants at risk of neonatal mortality and developmental consequences later in life. The risks of neonatal deaths for preemies and the critical importance of addressing preterm births has gained increasing recognition through the “Born too Soon” Global Action Report.

These results are exciting and will be balanced with the costs of transitioning from IFA to multiple micronutrients as countries decide how, when, and if to transition to “multis.” For many countries, the multiple micronutrients will be an added cost, and will come with substantial implications for procurement and supply management. They will also be a new product for many of the physicians, nurses, health workers and family members that have a role of supporting and encouraging pregnant women, and most importantly for pregnant women themselves.

Multiple micronutrient supplements will only have benefits if pregnant women have access to the supplements, receive them early enough in pregnancy to consume the recommended dose, and be supported, motivated and encouraged to consume the supplements daily. Global experiences with IFA supplementation would suggest that adherence has been one of the greatest challenges to behaviour change. Supporting adherence requires a reliable supply, encouraging counseling for pregnant women and improving a women’s access to IFA and related ante natal care services.

Nepal’s national iron intensification project is an example of a project that, for over eight years, was able to increase iron coverage from 23% to 80% and increase adherence of 90 tablets from 6% to 56%. This was largely achieved through the integration of a community based delivery system of female community health volunteers (FCHVs) who delivered the IFA supplements to women in their community and also encouraged them and restocked their IFA supply when needed. The FCHVs also received participatory training and provided practical advice on how to support and encourage women. Additional strategies will be needed to further increase adherence and maintain the motivation of the FCHVs.

As the global nutrition community reflects on the implications of the evidence from this new study, they will also be looking to learn from IFA programs and the successes and challenges. Whether IFA or multis are selected as part of the strategy for anemia reduction and improving maternal and newborn health, innovative approaches and replication of best practices and promising strategies for increasing adherence and coverage are needed to reduce maternal anaemia and benefit infants.

Tardy to the Party – Nutrition in the Genetic Engineering Conversation

By Kevin Klatt

The National Academies of Science, the World Health Organization, The American Association for the Advancement of Science, the European Food Safety Authority and Food Standards Australia New Zealand are just a few of the international organizations that have position papers on the use of genetic engineering as it applies to food. These reports all conclude that genetically modified foods present no unique safety threats compared to traditionally bred crops and/or have not been linked to detrimental human health outcomes (the Genetic Literacy Project has a nice infographic depicting these organizations here). Notably missing from this extensive list are, oddly, nutrition organizations.

Two of the major American nutrition organizations are the Academy of Nutrition and Dietetics (AND) and the American Society for Nutrition (ASN). The AND does not currently have a position on genetic engineering; however, its member center (1) informs us that a new Evidence Analysis Library paper entitled “Advanced Technology in Food Production” is due to come out soon. ASN does not have an official position paper on genetic engineering, either. Rather, genetically engineered foods are briefly mentioned in two of their publications: “Processed Foods: contributions to nutrition” (2) and “Nutrition Research to Affect Food and A Healthy Lifespan” (3).

At a time when misinformation about genetically engineered crops is all too common in the public discourse, it seems rather odd that neither of the two largest nutrition organizations are providing guidance on or actively engaging in this topic of conversation. Nevertheless, the conversation continues on without nutrition. A quick look at the agenda (4) for the upcoming National Academies workshop on January 15-16th entitled “When Science and Citizens Connect: Public Engagement on Genetically Modified Organisms” highlights this disheartening reality: no one representing the field of nutrition is scheduled in the line-up of speakers or presenters.

There are likely many reasons why nutrition has abstained from the conversation. Genetically engineered foods inherently address wildly interdisciplinary concepts: everything from sustainability, to agricultural economics and plant genetics. Nutrition is certainly a piece of the puzzle, but it is not the whole thing. Alternatively, maybe we were not invited to the conversation. It only takes a few seconds of Google’ing to see that many nutrition professionals, particularly registered dietitians, have been rather vocal in the crusade against genetically engineered foods.

Regardless of the reason for nutrition’s absenteeism, the field should take a vested interest in influencing the conversation with its unique perspective. The scientific literature is filled with numerous examples of genetic engineering with great potential for the field, even beyond the case of golden-rice; folate-enriched tomatoes (5), calcium-enhanced carrots (6), non-browning Arctic Apples (7) and low acrylamide potatoes (8) illustrate just a few of the ways that GE technology can be responsibly used to improve the nutrient quality of an individual’s diet. A recent paper in Nature Biotechnology did a thorough analysis of the status and market potential of transgenic biofortified crops, highlighting the wide spectrum that have undergone nutrient biofortification and their potential role in human nutrition (9). As this paper highlights, the promise and potential of GE foods is not that they will be the solution to improving diet, but rather, that they can be a part of the solution. We have been breeding crops with little to no consideration for the nutritional phenotype for centuries (10); nutritional scientists working with plant scientists (similar to what HarvestPlus currently does) could certainly alter that trajectory and improve the nutrient quality of the food supply. In addition to genetically engineered crops for human consumption, genetically engineering feed consumed by farm animals can alter the nutrient profiles of animal foods; most recently, yeast genetically modified to produce their own omega 3 fatty acids (11) made headlines as a way to sustainably improve the fatty acid profiles of farmed salmon (12). Though likely far from market availability, the potential to genetically engineer animals themselves to alter their nutrient profiles has even been discussed (13).

While the promise of genetic engineering’s potential abounds, ASN’s publication on the future of nutrition research (3) asks us a rather prudent question: “Can we leverage technologies, such as biotechnology and nanotechnology, to develop novel foods and food ingredients that will improve health, both domestically and abroad, and provide credible, tangible functional health benefits?” As it stands now, the answer to that question is still unknown, and further research to identify the answer continues unguided by statements from professional nutrition organizations.

The scientific community as a whole could benefit from including nutrition in the genetic engineering conversation. As the National Academies prepare for this conference, and wonder how to improve communications between the public and scientists, I cannot help but see an alternative route through nutrition. While the National Academies seems to realize that crops resistant to already-feared agricultural chemicals offer an intangible benefit to consumers, their focus on chestnut trees, butterflies, and mosquitoes still feels distant. Addressing the conflation of genetic engineering with pesticide resistance is certainly a start, but these alternative applications of genetic engineering do not address food, which is where the controversy exists most prominently. To truly address this issue, the public is going to need to see a direct benefit from genetic engineering as it applies to food; nutrient biofortification offers a promising outlet for this. Imagine if individuals were introduced to genetically engineered foods through folate-enriched tomatoes instead of pesticide-resistant corn.

Position stances from nutrition organizations on the applications, safety aspects, and future directions of genetically engineered foods are long overdue. With the genetic engineering debate furthering consumer distrust in scientific bodies, it is all the more essential for prominent nutrition organizations to team up with other scientific bodies, and enter into this conversation. The benefactors of our research and professional activities are those who eat food, some of which is genetically modified; we should no longer sit silent on this major food-related issue.

References
1. http://www.eatright.org/Members/content.aspx?id=6442482664
2. http://ajcn.nutrition.org/content/99/6/1525.abstract
3. http://advances.nutrition.org/content/4/5/579.full
4. http://nas-sites.org/publicinterfaces/files/2014/07/PILS-02-GMO-Interface-agenda05.pdf
5. http://www.pnas.org/content/101/38/13720.full
6. http://www.pnas.org/content/105/5/1431.long
7. http://www.arcticapples.com/arctic-apple-nutrition/
8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607532/
9. http://www.nature.com/nbt/journal/v33/n1/full/nbt.3110.html
10. http://www.ncbi.nlm.nih.gov/pubmed/20467463
11. http://www.ncbi.nlm.nih.gov/pubmed/20804805
12. http://civileats.com/2014/02/24/costco-to-sell-salmon-fed-gmo-yeast/
13. https://www.bio.org/sites/default/files/2011_ge%20animal_benefits_report.pdf